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Abstract
We study Bertrand’s duopoly of incomplete information. It is found that the
effect of quantum entanglement on the outcome of the game is dramatically
changed by the uncertainty of information. In contrast with the case of complete
information where the outcome increases with entanglement, when information
is incomplete the outcome is maximized at some finite entanglement. As
a consequence, information and entanglement are both crucial factors that
determine the properties of a quantum oligopoly.

PACS numbers: 02.50.Le, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The game theory as a branch of applied mathematics has been successful in modelling many
natural and social phenomena. Recently, people realized that when the games are carried out
on quantum systems many exciting features arise due to various quantum characteristics such
as quantum superposition and entanglement [1–3], which has been observed in experiment [4].
Since the classical game theory has very important application in economics, it is expected
that the quantum game may well shed some new light in this field [5].

In economics, many important markets are neither perfectly competitive nor perfectly
monopolized. These markets are usually called oligopolistic or imperfectly competitive and
can be analysed based on game theory. The two earliest, and also important, oligopolies are
proposed by Cournot [6] and Bertrand [7]. In Cournot’s duopoly, it is assumed that each of the
firms simultaneously choose the output and leave the price to be determined by the demand
curve of the market. Alternatively, Bertrand’s duopoly assumes that both firms choose their
price simultaneously and the output is determined by the demand curve. However, in the
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context of classical game theory the Nash equilibrium of these models are similar to the
equilibrium of the Prisoner’s Dilemma—the Nash equilibrium is Pareto dominated by another
strategy profile. Li et al have shown that such a dilemma-like situation can be removed from
Cournot’s duopoly of complete information by quantizing the game [8]. Similar results are
obtained by Lo et al [9] in Bertrand’s duopoly of complete information.

As we know, apart from the games with complete information, there is another distinct
kind of game, i.e. the games with incomplete information. In real markets, the incompleteness
of information seems somewhat inevitable. It is thus interesting to investigate the oligopolistic
games of incomplete information. Cournot’s duopoly of incomplete information was first
quantized by Du et al [10] and was generalized by Chen et al [11]. The results indicate that
due to the uncertainty of information, the profit function’s dependence on entanglement game
was dramatically changed. In order to describe the incomplete information two parameters
were introduced in [11]—the information asymmetry and the total information uncertainty.

It is worth pointing out that in practical markets firms are usually price-makers as in
Bertrand model instead of quantity-makers as in Cournot’s duopoly. A natural question is
what role will incomplete information play in the quantum Bertrand’s duopoly? We are trying
to answer this question in this paper. To quantize the model, we apply Li et al’s ‘minimal’
quantization rules [8]. We assume the incomplete information also roots in the uncertainty
of cost as in [10, 11]. We studied how the information asymmetry and the total information
uncertainty influence the game, respectively. This paper is organized as follows: in the next
section, we give the quantum version of Bertrand’s duopoly of incomplete information and
obtain the profit function. In section 3, we discuss the influence of the information on the
game.

2. The quantum Bertrand’s duopoly of incomplete information

We first review the elements of Bertrand’s duopoly of complete information. As a model
for oligopoly market competition, we suppose two players, say player 1 and player 2, are
producing some homogeneous product. They simultaneously decide the price p1 and p2 for
their products, with cost t1 and t2. The quantity each player sells is determined by

qi(pi, pj ) = a − pi + bpj (0 < b < 1), (1)

which is the key assumption of this model. The above expression can be well understood
through our common experience. The lower i’s price and the higher its opponent’s price, the
more products i can sell. The parameter b is introduced to describe the interaction of the two
players.

The profit function for player i is

Ui(pi, pj , b) = (a − pi + bpj )(pi − ti), (2)

where i = 1, 2.
Li et al [8] first proposed a quantization scheme for a game with continuous variables and

they successfully quantize Cournot’s duopoly. Since the models of Cournot and Bertrand have
similar mathematical structure, we expect the same quantization should also work in Bertrand’s
duopoly. Indeed, the quantization of Bertrand’s duopoly has been done by Lo et al [9]. In their
quantization, they make use of two single-mode electromagnetic fields |vac〉1 and |vac〉2. The
direct product of the two states |vac〉1 ⊗ |vac〉2 is the initial state. Then this state undergoes a
unitary entanglement operation Ĵ (γ ) = exp

{−γ
(̂
a
†
1â

†
2 − â1â2

)}
where â

†
i (̂ai) is the creation

(annihilation) operator of player i’s electromagnetic field and γ measures the magnitude of
entanglement. Then player i executes its move via a unitary operation D̂i(xi) = exp

{
xi

(̂
a
†
i −
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âi

)/√
2
}
. Finally, both players’ states are measured after a disentanglement operation Ĵ †(γ ).

Thus, the final state is |ψf 〉 = Ĵ †(γ )(D̂1(x1)⊗ D̂2(x2))Ĵ (γ )|vac〉1|vac〉2 = |p1〉1|p2〉2, which
is a product of two coherent states |p1〉1 and |p2〉2. It is straightforward to obtain the relation
between p1, p2 and x1, x2:{

p1(x1, x2, γ ) = x1 cosh γ + x2 sinh γ

p2(x1, x2, γ ) = x2 cosh γ + x1 sinh γ.
(3)

The observables we measure are the eigenvalue of the final coherent state p1 and p2,
which represent the price set by the two players. We can see from equation (3) that both p1

and p2 are determined by x1, x2 when γ �= 0. This property leads to the correlation between
the two players. When γ = 0, the quantum game goes back to the classical one.

When the information is incomplete, player i, though clearly knowing its own unit cost
ti , does not know exactly what tj is. Instead, player i only knows that tj obeys the distribution
fj (tj ). It is straightforward to obtain the expectation profit for player i:

Ui(x1, x2, b) =
∫

fj (tj )[(xi cosh γ + xj sinh γ ) − ti]

× [a − (xi cosh γ + xj sinh γ ) + b(xj cosh γ + xi sinh γ )] dtj . (4)

Since i’s strategy depends on its information, which only consists of ti , fi and fj , the
optimal strategy for i must take the form x∗

i = x∗
i (ti , f, fj ). To obtain x∗

i we solve the variation
equation, which yields the Bayes–Nash equilibrium

δxi
Ui(x1, x2, b) = 0. (5)

The solution is easy to work out3:

x∗
i = ti

2 cosh γ
+

e−γ cosh γ

2 cosh γ − b eγ
a − (sinh 2γ − b cosh 2γ ) e−γ

2 cosh γ (2 cosh γ − b eγ )
t, (6)

where we have assumed that t1 = t2 = t for simplicity.
Strictly speaking, equation (5) is only a necessary condition for Bayes–Nash equilibrium.

However in the case we concern here, it is also sufficient. The second order derivative of
Ui(x1, x2, b) with respect to xi is constantly negative. So x∗

i can guarantee Ui(x1, x2, b) to be
maximum. Thus x∗

i is indeed the Bayes–Nash equilibrium in our problem.
To avoid the complexity caused by specific choice of player i’s cost ti , we shall average

over ti thus we have the average optimal profit:

Ui = cosh γ − b sinh γ

4 cosh γ
�t2

i − sinh γ (sinh γ − b cosh γ )

4 cosh2 γ
�t2

j + UC
i , (7)

where �t2
i = ∫

fi(ti)(ti − t)2 dti is the information fluctuation of player i and UC
i =

(a − t + bt)2 (e2γ +1)[(1−b) e2γ +1+b]
4[(1−b) e2γ +1]2 , the superscript C denotes the game of complete information.

Note that the game of incomplete information goes back to the complete information case
when �t2

1 = �t2
2 = 0.

We can have an alternate representation of incomplete information by defining

Mi = �t2
i − �t2

j , N = �t2
i + �t2

j , (8)

where Mi can be regarded as a measure of the information asymmetry while N represents the
total information uncertainty.

3 From equation (5) we have x∗
i = a

2(cosh γ−b sinh γ )
+ ti

2 cosh γ
− sinh 2γ−b cosh 2γ

2 cosh γ (cosh γ−b sinh γ )
x∗

j , averaging over ti we have

two equations about x∗
1 and x∗

2 . Thus, we have x∗
i = a cosh γ +t(cosh γ−b sinh γ )

e2γ (1−b)+1
, substituting into the very first equation

can obtain x∗
i
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N

Ui

γ

—

Figure 1. The profit versus quantum entanglement γ and the total information uncertainty N.
We have taken a = 1, b = 0.5, t = 0.5 and Mi = 0.

Ui

γ

—

Figure 2. Several cross sections of figure 1 as profit versus quantum entanglement γ with different
settings of N.

Then we also have

Ui = (cosh 2γ − b sinh 2γ )

8 cosh2 γ
Mi +

1

8 cosh2 γ
N + UC

i . (9)

3. Discussions based on N and Mi

The information fluctuations, which are determined by two independent parameters, can be
described in several ways, for instance �t2

1 and �t2
2 or N and Mi. However, in practice, we

are particularly interested in the effects brought about by the total information uncertainty
and information asymmetry, which describe the relations of the two players with respect to
information. Therefore, the discussions based on N and Mi are presented in this section,
respectively.
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Mi

Ui

γ

—

Figure 3. The profit versus quantum entanglement γ and the information asymmetry Mi . We have
taken a = 1, b = 0.5, t = 0.5 and N = 0.6.

Ui

γ

—

Figure 4. Several cross sections of figure 3 as profit versus quantum entanglement γ with different
settings of Mi .

First, we shall study the influence of the total information uncertainty N. When information
is symmetrically distributed between the two players, i.e. Mi = 0, while N �= 0, the effect of
incomplete information is purely attributed to the total information uncertainty N. Proceeding
from equation (9) we plot the profit with respect to N and γ in figure 1, where we take
a = 1, b = 0.5, t = 0.5 with Mi = 0. For the sake of clarity, several cross sections of figure 1
are plotted in figure 2.

From figure 1 as well as figure 2, we can see that when information is complete, i.e.
N = 0, the profit increases monotonously with γ , which is also obtained in [9]. However,
when N comes into play the profit curve exhibits some intriguing features. While the profit
in the game of complete information reaches its maximum when γ → ∞, in the incomplete
information case the profit reaches its peak at some finite γmax. Seen from figures 1 and 2, as
N increases γmax gradually moves left until it reaches the origin.
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In order to investigate the effects of information asymmetry Mi , we will fix N and study
how the profit function varies with different Mi and the changes of the profit can be purely
attributed to the information asymmetry Mi . Proceeding from equation (9), we plot the profit
with respect to Mi and γ in figure 3, where we take a = 1, b = 0.5, t = 0.5 with N = 0.6.
Also for clarity, several cross sections of figure 3 are plotted in figure 4.

From figures 3 and 4, we can see that Mi significantly affects the profit in several ways.
First of all, a larger Mi globally raises the profit, that is at any γ the larger the Mi the better
the profit, which can also be seen directly from equation (9). Secondly, there is a threshold

m = b(a−t+bt)2

2(1−b)
that when Mi < m,Ui

opt
γ→∞ > Ui

opt
γ→−∞; when Mi > m,Ui

opt<Ui
opt
γ→−∞

γ→∞ .
Besides, the profit reaches its maximum at some finite γmax and as Mi increases γmax moves
left. When Mi = −N profit is maximized at γ = −∞. While it is claimed in [9] that
the negative entanglement diminishes the profit under the classical limit, in the incomplete
information case such a claim is valid only when Mi < N

2b+1 + 2(a − t + bt)2 4−(1+b)(2−b)2

(2b+1)(2−b)2 as
can be obtained from equation (9). Otherwise, negative entanglement will actually improve
the profit.

There is another interesting effect coming from Mi , when

Mi < − N + 8 cosh2 γUC
i

(cosh 2γ − b sinh 2γ )
, (10)

Ui < 0. Since a negative Mi means player i’s information is inferior to that of its opponent,
the above statement can be interpreted in another way; when a player’s information inferiority
reaches some extent its profit would be negative and have to retreat from the competition. It is
worth noting that such a case only happens in quantum game, because if γ = 0 equation (10)

becomes Mi < −N −8UC
i but on the other hand from equation (8) we know that −N < Mi <

N. Therefore, such a case resulted from the combination of entanglement and incomplete
information.

According to our observation, when information is incomplete maximum profit is achieved
at some certain γ and this certain γ depends on the distribution of information. To our
expectation, the entanglement is the crucial factor that makes the quantum model of incomplete
information different from the classical one.

4. Conclusion

We have studied the quantum Bertrand duopoly of incomplete information. In particular, we
have investigated how various properties of the profit function are affected by the incomplete
information, which is represented by N and Mi . It is found that the profit is no longer an
increasing function of quantum entanglement, the maximal profit is achieved at some finite γmax

determined by N and Mi . We have also found that negative entanglement does not necessarily
diminish the profit. Besides, when a player’s information is inferior to its opponent to some
extent, its profit may become negative. Moreover, considering our previous work on Cournot’s
duopoly, where information also plays a significant role, we can conclude that information and
entanglement are both crucial factors that determine the properties of a quantum oligopoly.
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